三角函数说课稿

时间:2024-07-19 05:38:29
三角函数说课稿

三角函数说课稿

作为一位杰出的教职工,总不可避免地需要编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么优秀的说课稿是什么样的呢?下面是小编整理的三角函数说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

三角函数说课稿1

各位同仁,各位专家:

我说课的课题是《任意角的三角函数》,内容取自苏教版高中实验教科书《数学》第四册 第1。2节

先对教材进行分析

教学内容:任意角三角函数的定义、定义域,三角函数值的符号。

地位和作用: 任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。

教学重点:任意角三角函数的定义

教学难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;

学情分析:

学生已经掌握的内容,学生学习能力

1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。

2。我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。

3。在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行

针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下

知识目标:

(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,

能力目标:

(1)理解并掌握任意角的三角函数的定义;

(2)正确理解三角函数是以实数为自变量的函数;

(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。

德育目标:

(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;

针对学生实际情况为达到教学目标须精心设计教学方法

教法学法:温故知新,逐步拓展

(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;

(2)通过例题讲解分析,逐步引出新知识,完善三角定义

运用多媒体工具

(1)提高直观性增强趣味性。

教学过程分析

总体来说, 由旧及新,由易及难,

逐步加强,逐步推进

先由初中的直角三角形中锐角三角函数的定义

过度到直角坐标系中锐角三角函数的定义

再发展到直角坐标系中任意角三角函数的定义

给定定义后通过应用定义又逐步发现新知识拓展完善定义。

具体教学过程安排

引入: 复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?

由学生回答

SinA=对边/斜边=BC/AB

cosA=对边/斜边=AC/AB

tanA=对边/斜边=BC/AC

逐步拓展:在高中我们已经建立了直角坐标系, 把“定义媒介”从直角三角形改为平面直角坐标系。

我们知道,随着角的概念的推广,研究角时多放在直角坐标系里, 那么三角函数的定义能否也放到坐标系去研究呢?

引导学生发现B的坐标和边长的关系。进一步启发他们发现由于相似三角形的相似比导致OB上任一P点都可以代换B,把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了

从而得到

知识点一:任意一个角的三角函数的定义

提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关。

精心设计例题,引出新内容深化概念,完善定义

例1已知角A 的终边经过P(2,—3),求角A的三个三角函数值

(此题由学生自己分析独立动手完成)

例题变式1,已知角A 的大小是30度,由定义求角A的三个三角函数值

结合变式我们发现三个三角函数值的大小与角的大小有关,只会随角的大小而变化,符合当初函数的定义,而我们又一直称呼为三角函数,

提出问题:这三个新的定义确实问是函数吗?为什么?

从而引出函数极其定义域

由学生分析讨论,得出结论

知识点二:三个三角函数的定义域

同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数

例题变式2, 已知角A 的终边经过P(—2a,—3a)( a不为0),求角A的三个三角函数值

解答中需要对变量的正负即角所在象限进行讨论, 让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点

知识点三:三角函数值的正负与角所在象限的关系

由学生推出结论,教师总结符号记忆方法,便于学生记忆

例题2:已知A在第二象限且 sinA=0。2 求cosA,tanA

求cosA,tanA

综合练习巩固提高,更为下节的同角关系式打下基础

拓展,如果不限制A的象限呢,可以留作课外探讨

小结回顾课堂内容

课堂作业和课外作业以加强知识的记忆和理解

课堂作业P16 1,2,4

(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)

课后分层作业(有利于全体学生的发展)

必作P23 1(2),5(2),6(2)(4) 选作P23 3,4

板书设计(见PPT)

三角函数说课稿2

一、教材分析

1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。

2、教学目标的确定及依据

A、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:

1)已知一个角的一个三角函数值能求这个角的其他三角函数值;

2)证明简单的三角恒等式。

B、过程与方法:培养 ……此处隐藏31975个字……初步掌握了任意角的三角函数的定义及三角函数的符号规律,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的作业,其中思考题的设计思想是:综合练习巩固提高,更为下节的学习内容打下基础,同时留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的,以有利于全体学生的发展。

七、简述板书设计。

cotα、cscα、secα的定义写在sinα、cosα、tanα的左下方,突出本节重要内容的主体地位。

结束:以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。

三角函数说课稿13

1、教学目标:

一、借助单位圆理解任意角的三角函数的定义。

二、根据三角函数的定义,能够判断三角函数值的符号。

三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。

四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。

2、教学重点与难点:

重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。

难点:任意角的三角函数概念的建构过程。

授课过程:

一、引入

在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。

二、创设情境

三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?

学生情况估计:学生可能会提出两种定义的方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。

问题:

1、锐角三角函数能否表示成第二种比值方式?

2、点P能否取在终边上的其它位置?为什么?

3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。

练习:计算的各三角函数值。

三、任意角的三角函数的定义

角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢?

尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗?

评价学生给出的定义。给出任意角三角函数的定义。

四、解析任意角三角函数的定义

三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域)

对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。

五、三角函数的应用。

1、已知角,求a的三角函数值。

2、已知角a终边上的一点P(-3,-4),求各三角函数值。

以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题:

1、已知角如何求三角函数值?

2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?)

3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。

4、探究:三角函数的值在各象限的符号。

六、小结及作业

教案设计说明:

新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。

首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。

其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。

再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的。培养数形结合的思想。

三角函数说课稿14

一、教学内容

本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。

二、教学目标

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。

2、能够进行含有30°、45°、60°角的三角函数值的计算。

3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。

三、过程与方法

通过进行有关推理,探索30°、45°、60°角的三角函数值。在具体教学过程中,教师可在教材的基础上适当拓展,使得内容更为丰富.教师可以运用和学生共同探究式的教学方法,学生可以采取自主探讨式的学习方法.

四、教学重点和难点

重点:进行含有30°、45°、60°角的三角函数值的计算

难点:记住30°、45°、60°角的三角函数值

五、教学准备

教师准备

预先准备教材、教参以及多媒体课件

学生准备

教材、同步练习册、作业本、草稿纸、作图工具等

六、教学步骤

教学流程设计

教师指导学生活动

1.新章节开场白. 1.进入学习状态.

2.进行教学. 2.配合学习.

3.总结和指导学生练习. 3记录相关内容,完成练习.

教学过程设计

1、从学生原有的认知结构提出问题

2、师生共同研究形成概念

3、随堂练习

4、小结

5、作业

板书设计

1、叙述三角函数的意义

2、30°、45°、60°角的三角函数值

3、例题

七、课后反思

本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。

《三角函数说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式